63 research outputs found

    Length frequency, length-weight relationship and distribution of Psettodes erumei in the Oman Sea

    Get PDF
    Psettodes erumei is the sole fish species belonging to Psettodidae family that lives in the Oman Sea. The species has a flat body and is thicker than other flat fishes. It has a large mouth with strong teeth and gray-brown color on body surface; and is mostlysround in muddy-sandy substrates up to 25m depths. The species is carnivorous and feeds on prey fishes. The common trawl and gillnet are commonly used for catching the fish. This study was carried out in the Oman Sea in 2002 covering 86 trawling stations. After each haul, the trawl was emptied on board for separation, identification and weight measurement of the catch items. The CPUA was calculated by Swept Area method and used as an index for distribution analysis of the fish species. The maximum snout-length was found to be 66cm for the study area and the length-weight relationship was calculated as W = 0.0294TL^2 7973

    Proceedings of the MICCAI Challenge on Multimodal Brain Tumor Image Segmentation (BRATS) 2013

    Get PDF
    International audienceBecause of their unpredictable appearance and shape, segmenting brain tumors from multi-modal imaging data is one of the most challenging tasks in medical image analysis. Although many different segmentation strategies have been proposed in the literature, it is hard to compare existing methods because the validation datasets that are used differ widely in terms of input data (structural MR contrasts; perfusion or diffusion data; ...), the type of lesion (primary or secondary tumors; solid or infiltratively growing), and the state of the disease (pre- or post-treatment). In order to gauge the current state-of-the-art in automated brain tumor segmentation and compare between different methods, we are organizing a Multimodal Brain Tumor Image Segmentation (BRATS) challenge that is held in conjunction with the 16th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI 2013) on September 22nd, 2013 in Nagoya, Japan

    A large annotated medical image dataset for the development and evaluation of segmentation algorithms

    Get PDF
    Semantic segmentation of medical images aims to associate a pixel with a label in a medical image without human initialization. The success of semantic segmentation algorithms is contingent on the availability of high-quality imaging data with corresponding labels provided by experts. We sought to create a large collection of annotated medical image datasets of various clinically relevant anatomies available under open source license to facilitate the development of semantic segmentation algorithms. Such a resource would allow: 1) objective assessment of general-purpose segmentation methods through comprehensive benchmarking and 2) open and free access to medical image data for any researcher interested in the problem domain. Through a multi-institutional effort, we generated a large, curated dataset representative of several highly variable segmentation tasks that was used in a crowd-sourced challenge - the Medical Segmentation Decathlon held during the 2018 Medical Image Computing and Computer Aided Interventions Conference in Granada, Spain. Here, we describe these ten labeled image datasets so that these data may be effectively reused by the research community

    Nanoparticles for cancer imaging: The good, the bad, and the promise

    Get PDF
    Recent advances in molecular imaging and nanotechnology are providing new opportunities for biomedical imaging with great promise for the development of novel imaging agents. The unique optical, magnetic, and chemical properties of materials at the scale of nanometers allow the creation of imaging probes with better contrast enhancement, increased sensitivity, controlled biodistribution, better spatial and temporal information, multi-functionality and multi-modal imaging across MRI, PET, SPECT, and ultrasound. These features could ultimately translate to clinical advantages such as earlier detection, real time assessment of disease progression and personalized medicine. However, several years of investigation into the application of these materials to cancer research has revealed challenges that have delayed the successful application of these agents to the field of biomedical imaging. Understanding these challenges is critical to take full advantage of the benefits offered by nano-sized imaging agents. Therefore, this article presents the lessons learned and challenges encountered by a group of leading researchers in this field, and suggests ways forward to develop nanoparticle probes for cancer imaging. Published by Elsevier Ltd

    The Medical Segmentation Decathlon

    Full text link
    International challenges have become the de facto standard for comparative assessment of image analysis algorithms. Although segmentation is the most widely investigated medical image processing task, the various challenges have been organized to focus only on specific clinical tasks. We organized the Medical Segmentation Decathlon (MSD)—a biomedical image analysis challenge, in which algorithms compete in a multitude of both tasks and modalities to investigate the hypothesis that a method capable of performing well on multiple tasks will generalize well to a previously unseen task and potentially outperform a custom-designed solution. MSD results confirmed this hypothesis, moreover, MSD winner continued generalizing well to a wide range of other clinical problems for the next two years. Three main conclusions can be drawn from this study: (1) state-of-the-art image segmentation algorithms generalize well when retrained on unseen tasks; (2) consistent algorithmic performance across multiple tasks is a strong surrogate of algorithmic generalizability; (3) the training of accurate AI segmentation models is now commoditized to scientists that are not versed in AI model training
    • 

    corecore